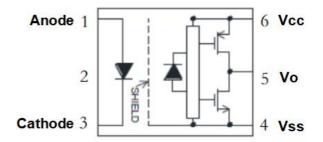


■ Features

- 4.0 A maximum peak output current
- Rail-to-rail output voltage
- 110ns maximum propagation delay
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- Wide operating range: 10 to 30 Volts (VCC)
- Guaranteed performance over temperature
 -40°C ~ +110°C.
- MSL class 1
- Regulatory Approvals
 - UL UL1577
 - VDE EN60747-5-5
 - CQC GB4943.1-2011

■ Applications


- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- AC/Brushless DC motor drives
- Switching power suppliers

Description

The MPH343 series Photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AlGaAs LED optically coupled to an integrated circuit with a power output stage.

The 4.0A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/200 A. For IGBTs with higher ratings, the MPH-343 series can be used to drive a discrete power stage which drives the IGBT gate. The Photocoupler operational parameters are guaranteed over the temperature range from -40° C $\sim +110^{\circ}$ C.

■ Schematic

TURTH TABLE					
LED	V _{CC} -V _{SS} (Turn-ON, +ve going)	V _{CC} -V _{SS} (Turn-OFF, -ve going)	Vo		
Off	0V to 30V	0V to 30V	Low		
On	0V to 11.0V	0V to 9.5V	Low		
On	11.0V to 13.5V	9.5V to 12V	Transition		
On	13.5V to 30V	12V to 30V	High		

Note: A 0.1µF bypass capacitor must be connected between Pin 4 and 6.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Average Forward Current	l _F	-	20	mA	
Reverse Input Voltage	V _R	-	5	V	
Input Power Dissipation	Pı	-	45	mW	
Total Output Supply Voltage	(V _{CC} -V _{SS})	0	35	V	
"High" Peak Output Current	I _{OH(PEAK)}	-	4.0	Α	1
"Low" Peak Output Current	I _{OL(PEAK)}	-	4.0	А	1
Output Current	V _{O(PEAK)}	-0.5	Vcc	V	
Output Power Dissipation	Po	-	700	mW	
Operating Temperature	Topr	-40	110	°C	
Output IC Junction Temperature	TJ	-	125	°C	
Storage Temperature	Tstg	-55	125	°C	
Soldering Temperature	Tsol	-	260	°C	

Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Note 1: Exponential waveform. Pulse width \leq 10 µs, f \leq 15 kHz.

RECOMMENDED OPERATION CONDITIONS				
PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Operating Temperature	T _A	-40	110	°C
Supply Voltage	Vcc	15	30	V
Input Current(ON)	I _{F(ON)}	7	16	mA
Input Voltage(OFF)	V _{F(OFF)}	-3.0	0.8	V

MPH343 Series

4.0A, Gate Driver Photo Coupler

ELE	CTRICAL	OPTI	CAL C	HARA	CTERI	STICS	
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
	INPUT CHARACTERISTICS						
Forward Voltage	VF	1.6	1.9	2.4	V	I _F =10mA	
Input Forward Voltage Temperature Coefficient	$\Delta V_F / \Delta T$	-	-1.237	-	mV/° C	I _F =10mA	
Input Reverse Voltage	BV _R	5	-	-	V	I _R =10μA	
Input Threshold Current (Low to High)	I _{FLH}	-	0.9	2	mA	V _O >5V,I _O =0A	
Input Threshold Voltage (High to Low)	V _{FHL}	0.8	-	-	V	V _{CC} =30V,V _O <5V	
Input Capacitance	C _{IN}	-	60	-	pF	$V_F=0$, $f=1MHz$	
	OUT	PUT CI	HARAC	ΓERIST	ICS		
High Level Supply Current	Іссн	-	1.70	3	mA	I_F =10mA, V_{CC} =30V V_O =Open, Rg =10Ω Cg=6nF	
Low Level Supply Current	IccL	-	2.11	3	mA	I_F =0mA, V_{CC} =30 V V_O =Open, Rg =10 Ω Cg=6nF	
High Level Output Voltage	V _{OH}	29.7	29.88	-	V	I _F =10mA,I _O =-100mA	2,3
Low Level Output Voltage	V _{OL}	-	0.1	0.3	\ \	I _F =0mA,I _O =100mA	
High Level Output Current	Іон	4.0	-	-	Α	$I_F=10\text{mA}, V_{CC}=30V$ $V_O=V_{CC}-15$	1
Low Level Output Current	loL	4.0	-	-	А	I_F =10mA, V_{CC} =30V V_O = V_{SS} +15	1
Under Voltage	VUVLO+	11.0	12.6	13.5	V	V _O >5V,I _F =10mA	
Lockout Threshold	VUVLO-	9.5	11.2	12.0	V	V _O <5V,I _F =10mA	

All Typical values at $T_A = 25$ °C and $V_{CC} - V_{SS} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Note 1: Maximum pulse width = $10 \mu s$.

Note 2: In this test V_{OH} is measured with a dc load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero amps.

Note 3: Maximum pulse width = 1 ms.

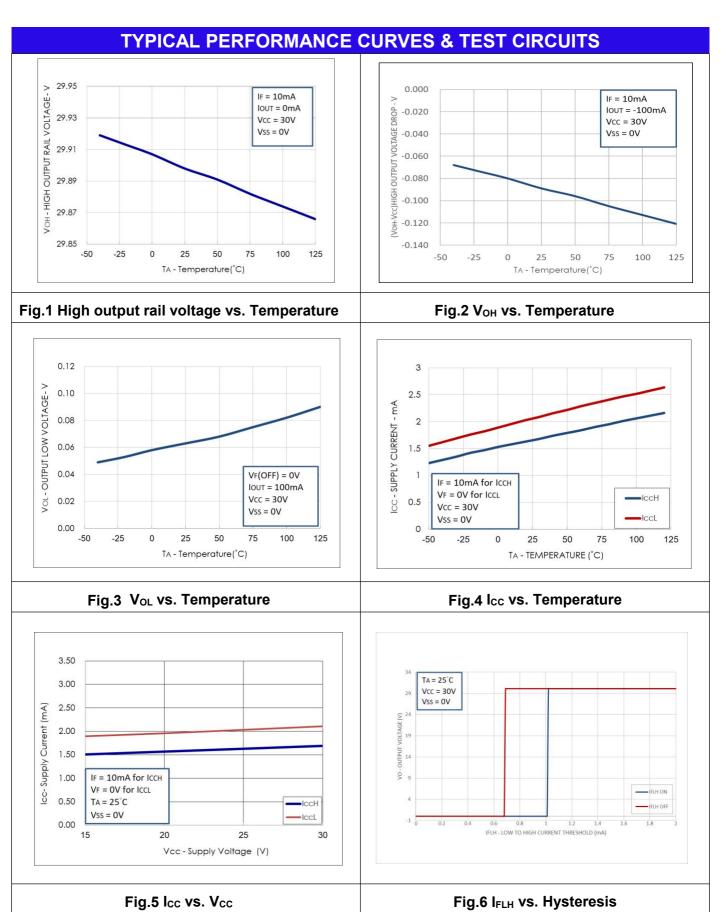
SWITCHING SPECIFICATION							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
	SWITC	HING	CHARA	CTERIS	STICS		
Propagation Delay Time to Output Low Level	t _{PHL}	-	74.5	110	ns		
Propagation Delay Time to Output High Level	t _{PLH}	-	61.3	110	ns	Rg=10Ω, Cg=25nF,	
Pulse Width Distortion	PWD	-	22	70	ns	f=10kHz,	
Propagation Delay Difference Between Any Two Parts	PDD (t _{PHL} -t _{PLH})	-100	-	+100	ns	Duty Cycle=50%, I _F =10mA, V _{CC} =30V	
Rise Time	t _r	-	20	-	ns	VCC-30 V	
Fall Time	t _f	-	15	-	ns		
Common Mode Transient Immunity at Logic High	СМн	20	40	-	kV/µs	I_F =7 to16mA, V_{CC} =30V, T_A =25°C, V_{CM} =1kV	1,2
Common Mode Transient Immunity at Logic Low	CM∟	20	40	-	kV/μs	I_F =0mA, V_{CC} =30V, T_A =25°C, V_{CM} =1kV	1,3

All Typical values at T_A = 25°C and $V_{CC} - V_{SS}$ = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

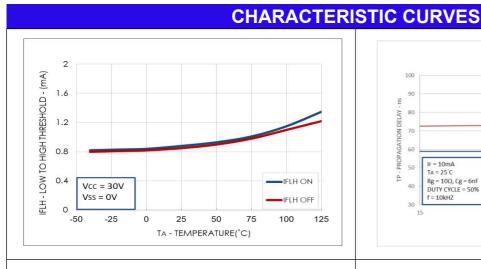
Note 1:Pin 2 needs to be connected to LED common.

Note 2: Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (meaning $V_0 > 15.0V$).

Note 3: Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in a low state (meaning $V_0 < 1.0V$).


	ISOLATION CHARACTERISTIC						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
Withstand Insulation Test Voltage	V _{ISO}	5000	-	-	V	RH≤40~60%, t=1min,T _A =25°C	1,2
Input-Output Resistance	R _{I-O}	-	10 ¹²	-	Ω	V _{I-O} =500V DC	1

All Typical values at $_{TA}$ = 25°C and $V_{CC} - V_{SS}$ = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.


Note 1: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage 6000VRMS for one second. This test is performed before the 100% production test for partial discharge.

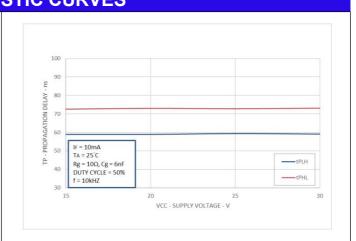


Fig.7 I_{FH} vs. Temperature

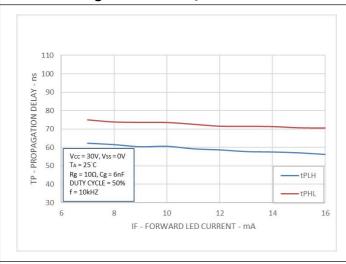


Fig.8 Propagation Delays vs. Vcc

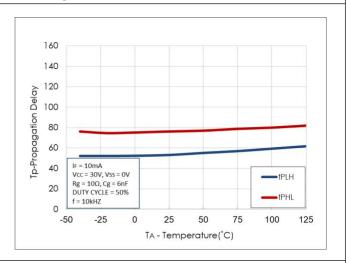


Fig.9 Propagation Delays vs. IF

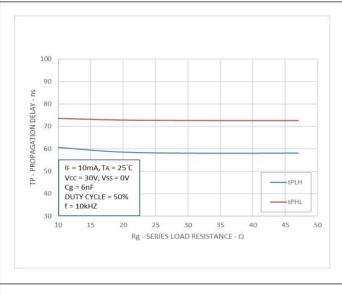


Fig.10 Propagation Delays vs. Temperature

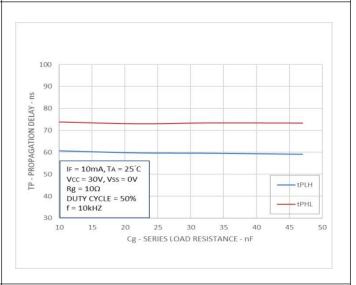


Fig.11 Propagation Delays vs. Rg

Fig.12 Propagation Delays vs. Cg

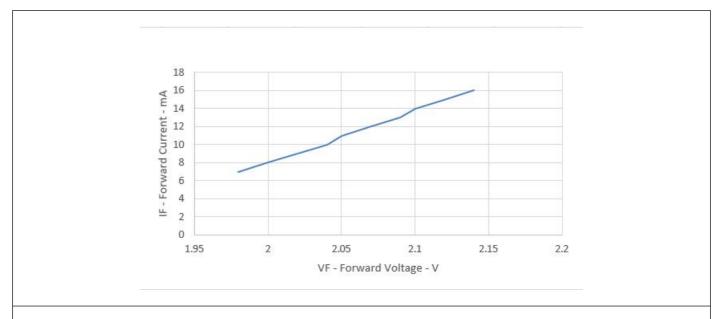


Fig.13 Input Current vs. Forward Voltage

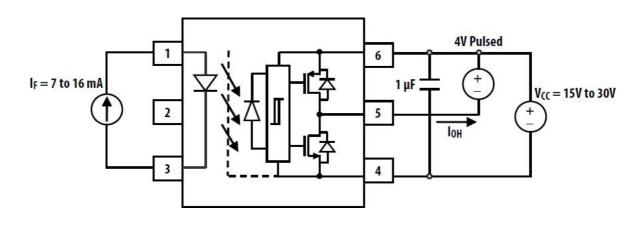


Fig.14 IOH Test Circuit

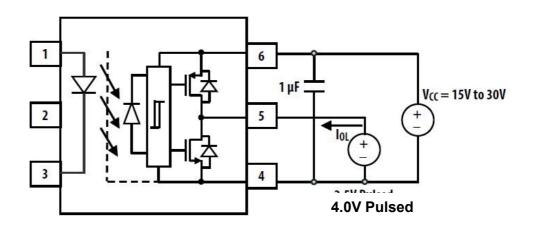


Fig.15 IOL Test Circuit

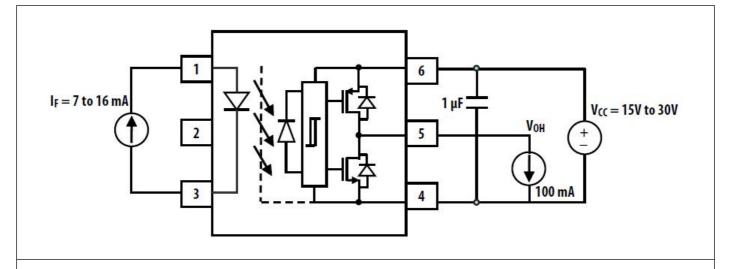


Fig.16 VOH Test Circuit

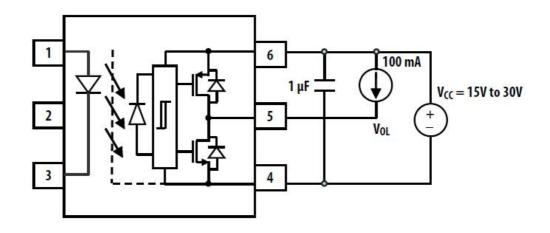


Fig.17 VOL Test Circuit

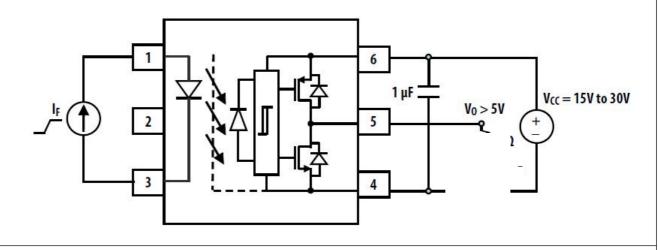


Fig.18 IFLH Test Circuit

Fig.19 UVLO Test Circuit

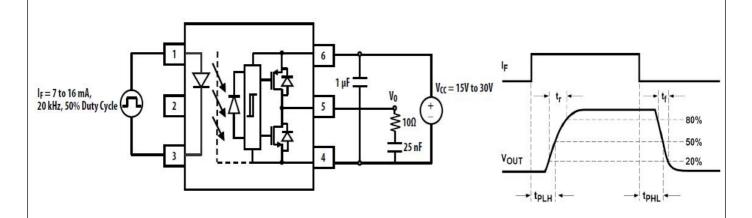


Fig.20 tPHL, tPLH, tr and tf Test Circuit and Waveforms

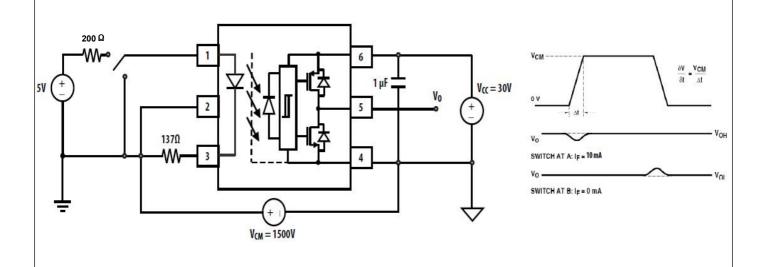
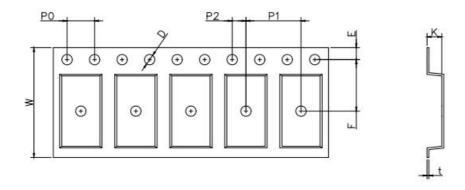
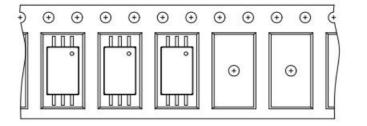


Fig.21 CMR Test Circuit with Split Resistors Network and Waveforms

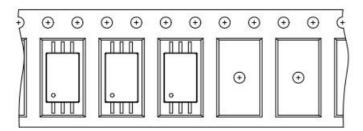


PACKAGE DIMENSIONS (Dimensions in mm unless otherwise stated) **Surface Mount Lead Forming** P type Dimension 2.54±0.25 1.27±0.25 6.81±0.30 0.40±0.10 0.80 0.20±0.10 4.50±0.30 7.70±0.30 0.95±0.25 9.70±0.30 W type Dimension 2.54±0.25 6.81 ± 0.30 0.40±0.10 0.80 0.20±0.10 4.50±0.30 0.75±0.25 11.50±0.30

TAPING DIMENSIONS (Dimensions in mm unless otherwise stated)


Taping Dimensions

Dimension Symbol	D	Е	F	P0	P1	P2	t	W	K
P type Dimension (mm)	1.5±0.1	1.75±0.1	7.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	0.3±0.1	16.0±0.3	2.15±0.1
W type Dimension (mm)	1.5±0.1	1.75±0.1	11.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	0.3±0.1	24.0±0.3	2.52±0.1


Tape & Reel Packing Specifications

Option T1

Option T2

ORDERING AND MARKING INFORMATION

MARKING INFORMATION

MP : Company Abbr.

H: High performance Photocoupler

343 : Part Number

P/W : Lead Form Option

V : VDE Identification(Option)

Y: Year date code

H : Factory identification mark

WW : 2-digit work week

ORDERING INFORMATION

MPH343(P/W)-VZ

MP- Company Abbr.

H – High performance Photocoupler

343 - Part Number

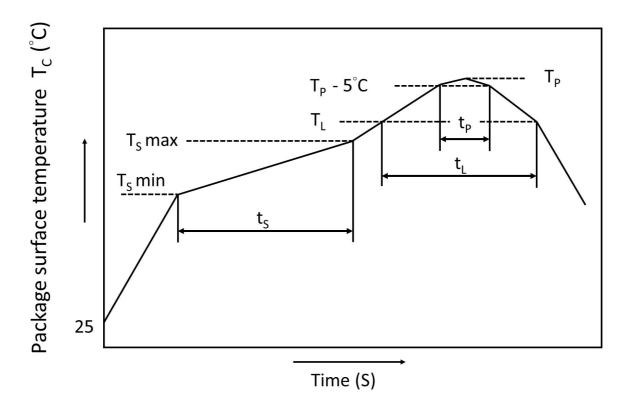
P/W – Lead Form Option(P-9mm Clearance or W-11mm Clearance)

V - VDE Option (V or None)

Z – Tape and Reel Option (T1/T2)

Packing Quantity

Option	Description	Quantity
P(T1)	Surface Mount Lead Forming – With Option 1 Taping	3000 Units/Reel
P(T2)	Surface Mount Lead Forming – With Option 2 Taping	3000 Units/Reel
W(T1)	Surface Mount Lead Forming – With Option 1 Taping	3000 Units/Reel
W(T2)	Surface Mount Lead Forming – With Option 2 Taping	3000 Units/Reel



REFLOW INFORMATION

REFLOW PROFILE

IR Reflow soldering

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

	Symbol	Min.	Max.	Unit
Preheat temperature	Ts	150	200	°C
Preheat time	ts	60	120	s
Ramp-up rate (T∟to T _P)			3	°C/s
Liquidus temperature	TL	21	7	°C
Time above T∟	t∟	60	100	s
Peak Temperature	Тр		260	°C
Time during which T _C is between (T _P - 5) and T _P	t⊳		20	s
Ramp-down rate			6	°C/s

MPH343 Series 4.0A, Gate Driver Photo Coupler

DISCLAIMER

- Our company is continually improving the quality, reliability, function and design. Our company reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Immerge unit's body in solder paste is not recommended.
- Discoloration might be occurred on the package surface after soldering, reflow or longtime use. It neither impacts the performance nor reliability..

Revision History

Version	Date	Subjects (major changes since last revision)
1.0	2022-07-21	Datasheet Complete