

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2CXL-MaxSonar ®- WR/WRC™ Series
High Performance Sonar Rangefinder
MB7040, MB7047
The I2CXL-MaxSonar-WR ultrasonic sensor features an I2C interface. The sensors
have high acoustic power output along with real-time auto calibration for changing
conditions (voltage and acoustic or electrical noise) that ensure users receive the
most reliable (in air) ranging data for every reading taken. The I2CXL-MaxSonar-WR
low power 3V – 5.5V operation provides very short to long-range detection and ranging, in a tiny and compact form
factor. The I2CXL-MaxSonar-WR will typically detect objects from 0-cm to 765-cm (3-cm to 625-cm for the WRC) and
provide sonar range information from 20-cm out to 765-cm with 1-cm resolution. Objects from 0-cm (3-cm for the WRC)
to 20-cm typically range as 20-cm.

Features
• I2C bus communication allows rapid

control of multiple sensors with only
two wires

• High acoustic power output
• Real-time auto calibration and noise

rejection for every ranging cycle
• Calibrated beam patterns
• Continuously variable gain
• Object presence information up to

the front face of the sensor (3-cm for
the WRC). Range information
starting at min. distance.

• 3V to 5.5V supply with very low
average current draw

• Readings can occur up to every
25mS (40Hz rate)3 for up-close
objects. 15Hz rate for full range.

• Triggered operation provides a new
range reading as desired

• Ultrasonic signal frequency of
42KHz

• Status pin available to determine
sensor state

• Power-up address reset pin available
• Physical dimensions match other

XL-MaxSonar-WR/WRC products
• -40°C to +65°C operation

Low Power Requirement
• Wide, low supply voltage

requirements eases battery powered
design

• Low current draw reduces current
drain for battery operation

• Fast first reading after power-up
eases battery requirements

Benefits
• Acoustic and electric noise

resistance
• Reliable and stable range data
• Low cost
• Quality controlled beam

characteristics
• Very low power rangefinder,

excellent for multiple sensor or
battery based systems

• Ranging is triggered externally
• Fast measurement cycle
• No power up calibration required
• Perfect for when objects may be

directly in front of the sensor during
power up

• Easy mounting

Applications and Uses
• Multi-sensor arrays
• Proximity zone detection
• People detection
• Robot ranging sensor
• Autonomous navigation
• Educational and hobby robotics
• Environments with acoustic and

electrical noise
• Distance measuring
• Long range object detection
• Security systems
• Motion detection
• Collision avoidance
• Bin level measurement

Notes:
1 Users are encouraged to evaluate the sensors
performance in their application
2 By design
3 Recommended time between readings of
100ms (10Hz Rate)

Close Range Operation
Applications requiring 100% reading-to-reading reliability should not use MaxSonar sensors at a distance closer than
20cm. Although most users find MaxSonar sensors to work reliably from 0 to 20cm for detecting objects in many
applications, MaxBotix® Inc. does not guarantee operational reliability for objects closer than the minimum reported
distance. Because of ultrasonic physics, these sensors are unable to achieve 100% reliability at close distances.

Warning: Personal Safety Applications
We do not recommend or endorse this product be used as a component in any personal safety applications. This product is
not designed, intended or authorized for such use. These sensors and controls do not include the self-checking redundant
circuitry needed for such use. Such unauthorized use may create a failure of the MaxBotix® Inc. product which may result
in personal injury or death. MaxBotix® Inc. will not be held liable for unauthorized use of this component.

I2CXL-MaxSonar ®
 - WR/WRC™ Series

About Ultrasonic Sensors
Our ultrasonic sensors are in air, non-contact object detection and ranging sensors that detect objects within an area. These
sensors are not affected by the color or other visual characteristics of the detected object. Ultrasonic sensors use high
frequency sound to detect and localize objects in a variety of environments. Ultrasonic sensors measure the time of flight
for sound that has been transmitted to and reflected back from nearby objects. Based upon the time of flight, the sensor
determines the range to a target.

Pin Out
GND: Return for the DC power supply. GND (& V+) must be ripple and noise free for best operation.
V+: Operates on 3VDC to 5.5VDC. The average current draw for 3.3V operation is 2.7mA (50mA peak) and for 5V
operation is 4.4mA (100mA peak) respectively. Peak current is used during sonar pulse transmit.
Pin 5-SCL (I2C Clock): This is the clock line for I2C communications. These sensors support I2C clock frequencies up
to 400kHz provided clock stretching is supported by the master device. Without clock stretching the devices can run at
speeds up to 50kHz.
Pin 4-SDA (I2C Data): This is the data line for I2C communications. These sensors operate as I2C slave devices.
Pin 3-Not Used: This pin is not used.
Pin 2-Address Announce / Status: While the sensor is performing a range reading, this pin is set high and I2C
communications are ignored. During non-ranging operation, this pin is held low and the sensor is listening for incoming
I2C communication. Optionally, users may poll this pin to determine if the sensor has finished its ranging cycle and is
ready to report the latest range information.
During power-up this pin will provide a pulse width representation of the sensors current address with a length of ~100
microseconds per digit. (The default address of 224 will announce with a pulse of 22,400 microseconds in length)
Pin 1-Temporary Default: This pin is internally pulled high. On power up, the state of this pin is checked; if left high or

disconnected, the sensor will use the address stored memory for I2C communications. If pulled low, the sensor will use its
default address for the current power cycle.

Default Address
The representation of the sensor address will be different depending on the addressing scheme your master device uses.
The chart below shows the default address for the I2CXL-MaxSonar-WR/WRC sensors under different addressing
implementations. Elsewhere in this datasheet a 8-bit read/write addressing scheme is assumed.

7-bit addressing 112 1110 000X

8-bit addressing 224 1110 000X

8-bit read/write
addressing

Write: 224

Read: 225

1110 0000

1110 0001

Addressing
Scheme

Default Address
(decimal)

Default Address
(binary)

Notes

7-bit addressing handles the address
shifting and R/W bit for the user

8-bit addressing inserts the R/W bit and
only allows for even number addresses

8-bit R/W addressing schemes require the
user to set the R/W bit directly.

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2C-MaxSonar-WR Commands

Range Cycle Interrupt
If the sensor receives a request to report the last range value while it is taking a range reading the range reading will be
interrupted and a NACK will be sent. If you desire to allow the full range cycle to complete before reading monitor the
status pin for the completion of a range cycle or wait for the full 100ms for the range . If the sensor is interrupted and has
already found a target the sensor will report the range to the target. If the sensor has not yet found a target when it is
interrupted the sensor will send the previous range value. If no range values have been found the distance sent will
alternate between 0cm and 255cm.

Take a range
reading

224 (default)

81

1110 0000

0101 0001

Report the last
range value

225 (default)

(Sent by sensor)

(Sent by sensor)

1110 0001

Range High

Byte

Values are

MSB to LSB

Change the
sensor address

224 (default)

170

165

(User Value)

1110 0000

1010 1010

1010 0101

###0

Command Value Used
(decimal)

Value Used
(binary)

Notes

Commands the sensor to take a
single range reading and save to
distance found for the next range
request. It is best to allow 100ms
between readings to allow for
proper acoustic dissipation.

The sensor will report the distance
value in cm obtained from its last
range reading. Users requiring
real-time information should
command a range reading ~80ms
before reading the sensor. After
power-up if no range command is
sent the sensor respond with two
part info bytes.

The sensor will only accept even
address values. If an odd numbered
address is sent the sensor will be set
to the next lowest even number. If
the sensor is told to change to one of
the invalid addresses below the
sensor will ignore this command
and stay at its current address.
Invalid Address Values:
0, 80, 164, 170

Sequence of Events

1. Initiate a write at the sensor
address

2. Write the range command
byte

1. Initiate a read at the sensor
address

2a. Read the two bytes from
the sensor starting with the
range high byte.

2b. Read the range low byte.

1. Initiate a write at the sensor
address

2a. Write three bytes to the
sensor starting with the
addr_unlock_1 command

2b. Write the addr_unlock_2
command

2c. Write the new sensor
address

I2CXL-MaxSonar ®
 - WR/WRC™ Series

Single Sensor Wiring Diagram
The I2C bus is a two wire interface that consists of a clock line and data line where each requires a pull-up resistor
attached to V+. Only one pull-up resistor is required each for the SCL and SDA lines per bus – not per sensor.

The I2C specification recommends a resistance value of 4.7 kΩ for 20-100kHz interfaces with good low inductance
routing. However, these specifications are for communication between chips on a singe PCB. If you have longer cable
lengths it is best to use lower value resistor, such as 1kΩ, and also to use properly shielded cables. Often I2C bus
problems can be fixed by doing one of the following: by using properly shielded cable or by decreasing the value of the
pull-up resistors. The I2CXL-MaxSonar-WR/WRC series is capable of sinking more current than the I2C specification
requires (15mA versus 3mA) so a much lower resistance value can be used. The voltage applied to the I2C lines should
be the same voltage that is applied to V+ of the sensor.

Multiple Sensor Wiring Diagram

SDA I2C Bus Master
SCL

GND
V+

I2CXL-MaxSonar-WR/WRC Sensors

G
N

D

V
+

G
N

D

V
+

G
N

D

V
+

 I2CXL-MaxSonar-WR/WRC Sensor

 I2C Bus Master
SDA

SCL

GND
V+

G
N

D

V
+

I2CXL-MaxSonar ®
 - WR/WRC™ Series

Range “0” Location
The I2CXL-MaxSonar-WR sensors reports the range to distant targets starting from the front of the sensor as shown in the
diagrams below.
The I2CXL-MaxSonar-WR/WRC will report the range to the closest detectable object. Target detection has been
characterized in the sensor beam patterns.

The range is measured from the front of the transducer to the target.
Range Zero

Range Zero

The range is measured from the front of the transducer to the target.

Range Zero

The range is measured from the front of the transducer to the target.

Range Zero

The range is measured from the front of the transducer to the target.

I2CXL-MaxSonar ®
 - WR/WRC™ Series

Sensor Minimum Distance
The sensor minimum reported distance is 20-cm . However, the I2CXL-MaxSonar-WR will range and report targets to the
front sensor face. Large targets closer than 20-cm will typically range as 20-cm. For the I2CXL-MaxSonar-WR
alternative housings, objects between 3-cm and 20-cm will typically range as 20-cm.

Real-time Noise Rejection
While the I2CXL-MaxSonar-WR/WRC is designed to operate in the presence of noise, best operation is obtained when
noise strength is low and desired signal strength is high. The user is encouraged to mount the sensor in such a way that
minimizes outside acoustic noise pickup. In addition, keep the DC power to the sensor free of noise. This will let the
sensor deal with noise issues outside of the users direct control (in general, the sensor will still function well even if these
things are ignored). Users are encouraged to test the sensor in their application to verify usability.
For every ranging cycle, individual filtering for that specific cycle is applied. In general, noise from regularly occurring
periodic noise sources such as motors, fans, vibration, etc., will not falsely be detected as an object. This holds true even
if the periodic noise increases or decreases (such as might occur in engine throttling or an increase/decrease of wind
movement over the sensor). Even so, it is possible for sharp non-periodic noise sources to cause false target detection. In
addition, *(because of dynamic range and signal to noise physics,) as the noise level increases, at first only small
targets might be missed, but if noise increases to very high levels, it is likely that even large targets will be missed.
The I2CXL-MaxSonar-WR series has additional resistance against periodic noise and small target rejection capabilities
over the standard XL-MaxSonar-WR series.
*In high noise environments, if needed, use 5V power to keep acoustic signal power high.

Target Size Compensation
The I2CXL-MaxSonar-WR/WRC sensors do not apply target size compensation to detected objects. This means that
larger size targets may report as a closer distance than the actual distance or smaller size targets may report as a further
distance than the actual distance.

Real-Time Auto Calibration
Each time before the I2CXL-MaxSonar-WR/WRC sensor takes a range reading it calibrates itself. The sensor then uses
this data to range objects. If the humidity or applied voltage changes during sensor operation, the sensor will continue to
function normally. The sensor does not apply compensation for the speed of sound change due to temperature to
any range readings. (20C operation is assumed when calculating the speed of sound, other MaxBotix Inc., products are
available with these features)

About Package Types
The I2CXL-MaxSonar-WR sensor line is available in a variety of packages for applications with specific mounting
requirements. The full horn package provides peak accuracy and sensitivity in this sensor line. It is recommended that
testing is completed to ensure that the selected sensor will operate as desired in your application.

Package Types Currently Available

Full Horn — 3/4” NPT straight; back mounted thread (best performance)

Compact — 3/4” NPT straight; back mounted thread

1”NPS — External thread over full sensor body (1”NPS)

1” BSPP — External thread over full sensor body (1”BSPP)

30mm1.5 — External thread over full sensor body (30mm1.5)

All package types have exposed PCB on user end for easy connec�on.

Users desiring a fully enclosed assembly may purchase the “Shielded

Cable Op�on” along with their sensor.

Ultra-Compact — PCB with 4 moun0ng holes

I2CXL-MaxSonar ®
 - WR/WRC™ Series

Performance Changes when Selecting a Non-Full Horn Package
When selecting an I2CXL-MaxSonar-WR without the full horn the sensor will experience the following performance
changes:

• The sensor will have a wider beam shape for the first meter.
• The sensor may have a dead zone from 0-6cm.
• The sensor may be less accurate by an additional +/- 0.5%.
• The sensor may have worse performance to small or soft targets.
• The sensor may experience decreased noise immunity when ranging to small, soft, angled, or distant targets.

Mechanical Dimensions
Full Horn

Ultra-Compact

A 1.72” dia. 43.8 mm dia.
B 2.00” 50.7 mm
C 0.58” 14.4 mm
D 0.31” 7.9 mm
E 0.23” 5.8 mm
F 0.10” 2.54 mm

G 3/4”-14 NPS

H 1.032” dia. 26.2 mm dia.
I 1.37” 34.8 mm

50 grams Weight

Values Are Nominal

Pin 1

A

B
D

C

E

F

G

I H

All values are nominal F 17.78 mm 0.70 ” L 13.4 mm 0.53 ” R 7.80 mm 0.31 ”
A 30.48 mm 1.20 ” G 30.48 mm 1.20 ” M 25.0 mm 0.98 ” S 7.62 mm 0.30 ”
B 35.56 mm 1.40 ” H 3.180 mm 0.13 ” N 1.57 mm 0.62 ” T 2.54 mm 0.10 ”
C 12.24 mm 0.60 ” I 25.40 mm 1.00 ” O 6.20 mm 0.24 ” U 1.07 mm 0.04 ”
D 2.540 mm 0.10 ” J 25.27 mm 1.00 ” P 8.00 mm 0.31 ” V 1.27 mm 0.05 ”
E 2.540 mm 0.10 ” K 10.40 mm 0.41 ” Q 13.9 mm 0.55 ” Weight 15.1 gram.

F

I H

B G

E
D C

A

N

M

J
L K

P
O

Q

R

S T
U

V

I2CXL-MaxSonar ®
 - WR/WRC™ Series

Mechanical Dimensions Continued
Compact Housing

1” NPS Pipe Threading

1” BSPP Pipe Threading

30mm1.5 Pipe Threading

A 1.37” dia. 34.7 mm dia.
B 0.70” 17.9 mm
C 0.57” 14.4 mm
D 0.31” 7.9 mm
E 0.23” 5.8 mm
F 0.10” 2.54 mm

G 3/4”-14 NPS

H 1.032” dia. 26.2 mm dia.
I 1.37” 34.8 mm

32 grams Weight

Values Are Nominal

I H A

B
D

C

E

F

Pin 1

G

A 1.29” dia. 38.2 mm dia.
B 1.30” 33.1 mm
C 0.20” 5.2 mm
D 0.10” 2.54 mm

E 1”— NPS

F 0.78” 19.8 mm

Weight 35 grams

Values Are Nominal

F A

B C

D

Pin 1

E

A 1.29” dia. 38.2 mm dia.
B 1.30” 33.1 mm
C 0.20” 5.2 mm
D 0.10” 2.54 mm

E 1”— BSPP

F 0.78” 19.8 mm

Weight 34 grams

Values Are Nominal

F A

B C

D

Pin 1

E

A 1.17” dia. 29.7 mm dia.
B 1.30” 33.1 mm
C 0.20” 5.2 mm
D 0.10” 2.54 mm

E 30mm 1.5

F 0.78” 19.8 mm

Weight 31 grams

Values Are Nominal

F A

B C

D

Pin 1

E

I2CXL-MaxSonar ®
 - WR/WRC™ Series

Pulse Width

between 200uS
and 25.4ms

 Power applied

Sensor ready for I2C

 Pin 2-Address
 Announce / Status

 Pin 3-Temporary
 Default

 Vcc

 Pin 6-V+

 Gnd

 Vcc

 Gnd

 Vcc

 Gnd

 0ms ~70ms ~90ms ~115ms ~135ms

Pulled high unless grounded by external source

Note: Checked for
external grounding here

Power-Up Timing
The I2CXL-MaxSonar-WR/WRC starts operating within milliseconds of application of power. The major timing of
power-up events for the I2CXL-MaxSonar-WR/WRC can be seen in the diagram below.

Power-up Timing Diagram

After the sensor is commanded to take a range reading it sends an ultrasonic pulse, waits between ~15ms to ~70ms to
detect a target, and determines the range Then the sensor will resume I2C communications. If the sensor is addressed
while in the middle of a range reading and the sensor has not yet determined a target to report, the sensor will stop the
ranging process. If no range has been found the communication will be responded with a NACK (not acknowledge).
In environments that reflect acoustic noise well, sampling faster than 10Hz could cause the sensor to pick up signals from
previous ultrasonic pulses and report false data. It is possible, however, to take range readings at a significantly faster rate
in certain environments.
When changing the part address, ensure that power to the sensor is not disrupted or memory corruption may occur. If the
memory becomes corrupted, the part should automatically use the default shipped address on power up. It is
recommended to avoid changing the address often, as it could cause premature memory failure due to repeated erase/write
cycles.
__

Background Information Regarding our Beam Patterns
Each I2CXL-MaxSonar-WR/WRC sensor has a calibrated beam pattern. Each sensor is matched to
provide the approximate detection pattern shown in this datasheet. This allows end users to select
the part number that matches their given sensing application. Each part number has a consistent
field of detection so additional units of the same part number will have similar beam patterns. The
beam plots are provided to help identify an estimated detection zone for an application based on the
acoustic properties of a target versus the plotted beam patterns.
Each beam pattern is a 2D representation of the detection area of the sensor. The beam pattern is
actually shaped like a 3D cone (having the same detection pattern both vertically and horizontally).
Detection patterns for dowels are used to show the beam pattern of each sensor. Dowels are long
cylindered targets of a given diameter. The dowels provide consistent target detection
characteristics for a given size target which allows easy comparison of one MaxSonar sensor to
another MaxSonar sensor.
For each part number, the four patterns (A, B, C, and D) represent the detection zone for a given
target size. Each beam pattern shown is determined by the sensor’s part number and target size.
The actual beam angle changes over the full range. Use the beam pattern for a specific target at any given distance to
calculate the beam angle for that target at the specific distance. Generally, smaller targets are detected over a narrower
beam angle and a shorter distance. Larger targets are detected over a wider beam angle and a longer range.
Compared to the XL-MaxSonar-WR line, the I2CXL-MaxSonar-WR lines offers slightly tighter beam patterns compared
to the same model number (i.e. I2CXL-MaxSonar-WR versus XL-MaxSonar-WR1).

People Sensing:
For users that
desire to detect
people, the
detection area to
the 1-inch
diameter dowel, in
general, represents
the area that the
sensor will
reliably detect
people.

I2CXL-MaxSonar ®
 - WR/WRC™ Series

MB7040 Applications and
Uses
• People detection

• Security

• Motion detection

• Useable with battery power

• Autonomous navigation

• Educational and hobby robotics

• Collision avoidance

MB7040: I2CXL-MaxSonar®-WR™
The I2CXL-MaxSonar-WR is the recommended weather-resistant sensor. This sensor is ideal for environments with
multiple sensors where the I2C interface simplifies wiring and hook-up. It features a long, narrow beam pattern with high
sensitivity.

MB7040 Features and
Benefits
• Low power consumption

• Narrow, controlled beam

• Easy to use interface

• Detects smaller objects

• Can be powered by many different

types of power sources

I2CXL-MaxSonar ®
 - WR/WRC™ Series

MB704X Applications and
Uses
• Security

• Motion detection

• Useable with battery power

• Autonomous navigation

• Educational and hobby robotics

• Collision avoidance

MB704X I2CXL-MaxSonar-WRC Beam Pattern and Uses
The XL-MaxSonar-WR product line is available in alternative housings that include an Ultra-Compact form factor, WRC
form factor, 1” NPS pipe threading, 1” BSPP pipe threading, and 30mm 1.5 pipe threading

MB704X
Features and Benefits
• Low power consumption

• Easy to use interface

• Can be powered by many different

types of power sources

• Can detect people up to

approximately 6 feet

• Can be flush mounted in an

application

• Same resolution as the full horn

• Mounting is available for both

metric and imperial standards

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2C Code Examples

Arduino Uno (as of Arduino 1.0.6)

/* Arduino I2C for a MaxSonar */

/// ///////////////////////

// Arduino I2C for a MaxSonar by Carl Myhre is lic ensed under a //

// Creative Commons Attribution-ShareAlike 4.0 Int ernational License. //

// Original Author: Carl Myhre, 10-02-2014, Revis ion: 1.0 //

// Modifications by: //

// //

// Revision History: 1.0 -- 10-02-2014 -- Created initial code build //

// //

// The original I2C libraries were created by Pete r Fleury //

// http://homepage.hispeed.ch/peterfleury/avr-so ftware.html //

// //

// These libraries were adapted by Bernhard Nebel for use on Arduino //

// https://github.com/felias-fogg/SoftI2CMaster //

// //

// Special Thanks to MaxBotix Inc. for sponsoring this project! //

// http://www.maxbotix.com -- High Performance U ltrasonic Sensors //

// //

// For more information on installing the I2C libr aries for Arduino //

// visit http://playground.arduino.cc/Main/Softw areI2CLibrary //

/// ///////////////////////

//Hints on installing this code:

// 1. You will need to install the <SoftI2CMaster.h > library before using this code.

// On Windows, the files are placed in C:\Prog ram Files (x86)\Arduino\libraries\SoftI2CMaster\

// 2. As of 10-02-14 the Arduino library page (refe rence above) has the wrong name for the include fil e

// it lists <SoftI2C.h> instead of <SoftI2CMas ter.h> -- use the one that matches your installatio n.

// 3. Make sure to load the library into the Arduin o compiler.

// To do this go to: SKETCH >> IMPORT LIBRARY. .. >> ADD LIBRARY...

// Then navigate to C:\Program Files (x86)\Ard uino\libraries\SoftI2CMaster\SoftI2CMaster.h

// 4. Be sure to set the SCL and SDA pins so that t hey match the pins you are using.

// 5. I have included 3 working "code examples" whi ch differ from the 3 "functions" I included.

// The functions are all that should be requir ed to quickly use the I2C library to talk to a MaxS onar.

// The three code examples show how I would im plement each of the common tasks you may wish to do .

// 6. The included functions are as follows:

// A. start_sensor(addr)

// B. read_sensor(addr)

// C. change_address(oldaddr,newaddr)

// 7. The included code examples are as follows:

// A. read_the_sensor_example()

// B. address_polling_example()

// C. default_address_change_example()

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2C Code Examples

Arduino Uno (as of Arduino 1.0.6)

/*
Below, I define the SCL and SDA pins by their ATMEG A pins I have included links to common mappings bel ow.
 UNO: http://arduino.cc/en/Hacking/PinMapping16 8
 NANO: (matches UNO but has fewer pins)
 MEGA 2560: http://arduino.cc/en/Hacking/PinMapp ing2560
The current data matches the setup for the Arduino Uno -- they may need to be changed if the hardware changes.
You can also switch the I2C interface
to any of the tristate pins that you want (not just the SDA or SCL pins).
*/
#define SCL_PIN 5 //Default SDA is Pin 5 PORTC for the UNO -- you can set this to any tris tate pin
#define SCL_PORT PORTC
#define SDA_PIN 4 //Default SCL is Pin 4 PORTC for the UNO -- you can set this to any tris tate pin
#define SDA_PORT PORTC
#define I2C_TIMEOUT 100 //Define a timeout o f 100 ms -- do not wait for clock stretching longer than this time

/*
I have included a couple of extra useful settings f or easy reference.
//#define I2C_CPUFREQ (F_CPU/8)//Useful if you plan on doing any clock switching
#define I2C_FASTMODE 1 //Run in fast mode (400 kHz)
#define I2C_SLOWMODE 1 //If you do not defi ne the mode it will run at 100kHz with this define set to 1 it
 //will run at 25kHz
*/
#include <SoftI2CMaster.h> //You will need to i nstall this library

void setup(){
 // Initialize both the serial and I2C bus
 Serial.begin(9600);
 i2c_init();

 // (OPTIONAL) Check each address for a sensor
 address_polling_example();

 /*
 Note that I placed the address change example i n setup() for a good reason.
 Changing the sensor address causes an EEPROM wr ite, there should only be ~1,000,000+
 of these writes to the sensor microcontroller over its product lifetime.
 Changing the address is fine, but doing it ever y second for the next 4 years may
 cause reliability issues.
 */
 // (OPTIONAL) Run an address change example
 default_address_change_example();

 // Your code here
}

void loop()
{
 // (OPTIONAL) Read a sensor at the default addres s
 read_the_sensor_example();

 // Your code here

}

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2C Code Examples

Arduino Uno (as of Arduino 1.0.6)

///
// Function: Start a range reading on the sensor //
///
//Uses the I2C library to start a sensor at the giv en address
//Collects and reports an error bit where: 1 = ther e was an error or 0 = there was no error.
//INPUTS: byte bit8address = the address of the sen sor that we want to command a range reading
//OUPUTS: bit errorlevel = reports if the function was successful in taking a range reading: 1 = the function
// had an error, 0 = the function was successful
boolean start_sensor(byte bit8address){
 boolean errorlevel = 0;
 bit8address = bit8address & B11111110; //Do a bitwise 'and' operation to force the las t bit to be
 //zero -- we are writing to the address.
 errorlevel = !i2c_start(bit8address) | errorlevel ; //Run i2c_start(address) while doing so, collec t any errors
 //where 1 = there was an error.
 errorlevel = !i2c_write(81) | errorlevel; //Send the 'take range reading' command. (notic e how the
 //library has error = 0 so I had to use "!" (no t) to invert
 //the error
 i2c_stop();
 return errorlevel;
}

/// ////////////////////
// Function: Read the range from the sensor at the specified address //
/// ////////////////////
//Uses the I2C library to read a sensor at the give n address
//Collects errors and reports an invalid range of " 0" if there was a problem.
//INPUTS: byte bit8address = the address of the se nsor to read from
//OUPUTS: int range = the distance in cm that the sensor reported; if "0" there was a communication error
int read_sensor(byte bit8address){
 boolean errorlevel = 0;
 int range = 0;
 byte range_highbyte = 0;
 byte range_lowbyte = 0;
 bit8address = bit8address | B00000001; //Do a bi twise 'or' operation to force the last bit to be 'o ne' -- we are
 //reading from the address.
 errorlevel = !i2c_start(bit8address) | errorlevel ;
 range_highbyte = i2c_read(0); //Read a byte and send an ACK (acknowledge)
 range_lowbyte = i2c_read(1); //Read a byte and send a NACK to terminate the transmission
 i2c_stop();
 range = (range_highbyte * 256) + range_lowbyte; //compile the range integer from the two bytes rece ived.
 if(errorlevel){
 return 0;
 }
 else{
 return range;
 }
}

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2C Code Examples

Arduino Uno (as of Arduino 1.0.6)

///
// Function: Start a range reading on the sensor //
///
//Uses the I2C library to start a sensor at the giv en address
//Collects and reports an error bit where: 1 = ther e was an error or 0 = there was no error.
//INPUTS: byte bit8address = the address of the sen sor that we want to command a range reading
//OUPUTS: bit errorlevel = reports if the function was successful in taking a range reading: 1 = the function
// had an error, 0 = the function was successful
boolean start_sensor(byte bit8address){
 boolean errorlevel = 0;
 bit8address = bit8address & B11111110; //Do a bitwise 'and' operation to force the las t bit to be
 //zero -- we are writing to the address.
 errorlevel = !i2c_start(bit8address) | errorlevel ; //Run i2c_start(address) while doing so, collec t any errors
 //where 1 = there was an error.
 errorlevel = !i2c_write(81) | errorlevel; //Send the 'take range reading' command. (notic e how the
 //library has error = 0 so I had to use "!" (no t) to invert
 //the error
 i2c_stop();
 return errorlevel;
}

/// ////////////////////
// Function: Read the range from the sensor at the specified address //
/// ////////////////////
//Uses the I2C library to read a sensor at the give n address
//Collects errors and reports an invalid range of " 0" if there was a problem.
//INPUTS: byte bit8address = the address of the se nsor to read from
//OUPUTS: int range = the distance in cm that the sensor reported; if "0" there was a communication error
int read_sensor(byte bit8address){
 boolean errorlevel = 0;
 int range = 0;
 byte range_highbyte = 0;
 byte range_lowbyte = 0;
 bit8address = bit8address | B00000001; //Do a bi twise 'or' operation to force the last bit to be 'o ne' -- we are
 //reading from the address.
 errorlevel = !i2c_start(bit8address) | errorlevel ;
 range_highbyte = i2c_read(0); //Read a byte and send an ACK (acknowledge)
 range_lowbyte = i2c_read(1); //Read a byte and send a NACK to terminate the transmission
 i2c_stop();
 range = (range_highbyte * 256) + range_lowbyte; //compile the range integer from the two bytes rece ived.
 if(errorlevel){
 return 0;
 }
 else{
 return range;
 }
}

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2C Code Examples

Arduino Uno (as of Arduino 1.0.6)

/// /////////////
// Code Example: Poll all possible addresses to fin d a sensor //
/// /////////////
void address_polling_example(){
 boolean error = 0; //Create a bit to check for c atch errors as needed.
 int range = 0;
 Serial.println("Polling addresses...");

 //Walk through all possible addresses and check f or a device that can receive the range command and will
 // return two bytes.
 for (byte i=2; i!=0; i+=2){ //start at 2 and co unt up by 2 until wrapping to 0. Checks all address es (2-254)
 //except 0 (which c annot be used by a device)
 error = 0;
 error = start_sensor(i); //Start the sensor and collect any error codes.
 if (!error){ //If you had an err or starting the sensor there is little point in rea ding it.
 delay(100);
 range = read_sensor(i); //reading the senso r will return an integer value -- if this value is 0 there was
 //an error
 Serial.println(i);
 if (range != 0){
 Serial.print("Device found at:");Serial.pri nt(i);Serial.print(" Reported value of:");Serial.pr intln(range);
 }
 }
 else{
 Serial.print("Couldn't start:");Serial.printl n(i);
 }
 }

 Serial.println("Address polling complete.");
}

//
// Code Example: Change the default address //
//
void default_address_change_example(){
 boolean error = 0; //Create a bit to check for c atch errors as needed.
 int range;

 Serial.println("Take a reading at the default add ress");

 //Take a range reading at the default address of 224
 error = start_sensor(224); //Start the sensor and collect any error codes.
 if (!error){ //If you had an err or starting the sensor there is little point in rea ding it.
 delay(100);
 range = read_sensor(224); //reading the senso r will return an integer value -- if this value is 0 there was
 //an error
 Serial.print("R:");Serial.println(range);
 }

 Serial.println("Change the sensor at the default address to 222");

I2CXL-MaxSonar ®
 - WR/WRC™ Series

I2C Code Examples

Arduino Uno (as of Arduino 1.0.6)

 //Change the address from 224 to 222

 error = 0;

 error = change_address(224,222); //Change the ad dress -- I don't do anything with the error handler at this point

 //but you can i f you want.

 delay(200); //Wait 125ms for the sensor to sav e the new address and reset

 Serial.println("Take a reading at the new addres s");

 //Take a range reading at the new address of 222

 error = 0;

 error = start_sensor(222); //Same as above bu t at the new address

 if (!error){

 delay(100);

 range = read_sensor(222);

 Serial.print("N:");Serial.println(range);

 }

 Serial.println("Change the sensor back to the de fault address");

 //Change the address from 222 to 224

 error = 0;

 error = change_address(222,224);

 delay(200); //Wait 125ms for the sensor to sav e the new address and reset

}

